

Profil Environnemental Produit

Gamme de produits (nom

technique):

Gamme de produits (nom de la marque):

Produit de référence:

Câble BTS multiconducteur

U-1000 AR2V-multi

U-1000 AR2V 4G120 GL

9018

kg CO₂ eq.

Changement climatique

- total

0,01815

kg Sb eq.

Épuisement des ressources abiotiques -métaux et minéraux

Consommation nette d'eau douce

Consommation totale d'énergie primaire

Les impacts environnementaux ci-dessus sont les valeurs « du berceau à la porte » ou de la « phase de fabrication » (A1-A3)

Date de publication:	08-2023	Durée de validité:	5 ans
N° d'habilitation du vérificateur:	VH18	Informations et référentiels:	www.pep-ecopassport.org
TEL ecopussport N .	14X143-00037-402.01-11X	Règles spécifiques:	PSR-0001-ed4-EN-2022 11 16
PEP ecopassport N°:	NXNS-00039-V02.01-FR	Règles de rédaction:	PEP-PCR-ed4-EN-2021 09 06

Independent verification of the declaration and data, in accordance with ISO 14025: 2006

Revue critique du PCR conduite par un panel d'experts présidé par Julie Orgelet (Ddemain).

Les PEP sont conformes à la norme XP C08-100-1 :2016 ou EN 50693 Les éléments du présent PEP ne peuvent être comparés avec les éléments issus d'un autre programme.

Document conforme à la norme ISO 14025:2006 Déclarations environnementales de Type III : « Marquages et déclarations environnementaux. Déclarations environnementales de Type III »

REALIZED BY:

S. Wasiuta

31, rue de l'Industrie - 59460 Jeumont - France

Sophie.Wasiuta@nexans.com

+33 327536416

https://www.nexans.com/csr.html

Engagement de responsabilité sociale d'entreprise de Nexans

La Responsabilité Sociétale de l'entreprise, à la confluence des aspects environnementaux, économiques et sociaux, fait partie intégrante de la stratégie de Nexans. Nexans soutient le Pacte Mondial des Nations Unies depuis décembre 2008 et a mis en place des plans d'actions internes pour intégrer le Développement Durable à tous les niveaux. Il comprend une gouvernance responsable, un environnement de travail sain et sûr pour les employés, une empreinte carbone mondiale réduite grâce à la stratégie de neutralité carbone de Nexans.

Description du produit du référence

NXNS-00039-V02.01

Les câbles industriels rigides Aluminium non armés U-1000 AR2V peuvent être utilisés dans toutes les installations de transport d'énergie basse tension. Ces produits peuvent compléter notre gamme dédiée aux applications photovoltaiques (KEYLIOS®).

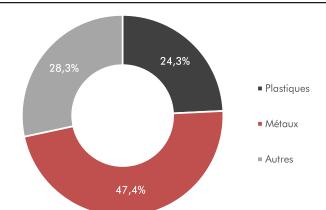
Produits concernés:

Les produits mentionnés ci-dessus appartiennent à la catégorie Fils, Câbles et Matériels de raccordement du document intitulé Règles de définition des Catégories de Produit du programme PEP ecopassport®.

Ce PEP concerne tous les produits de la gamme U-1000 AR2V-multi et le produit du référence de ce PEP est U-1000 AR2V 4G120 GL.

Unité fonctionnelle:

Transporter de l'énergie exprimée pour 1A sur une distance de 1km pendant 30 années et un taux d'utilisation de 70%, en conformité avec les normes en vigueur, précisées dans la fiche technique du produit disponible sur le site www.nexans.com.


La durée et le taux d'utilisation correspondent à l'application Bâtiment - Residentiel / Tertiaire / Industriel telle que définie dans le tableau donné en Annexe 1 des règles spécifiques aux fils, câbles et matériels de raccordement.

Le PEP présenté a été élaboré en considérant les paramètres suivants:

- 1 km pour les étapes de fabrication, distribution et fin de vie
- 1 km et 1A pour l'étape d'utilisation

L'impact potentiel de l'étape d'utilisation est à calculer par l'utilisateur du PEP en fonction de l'ampérage réel lors de l'utilisation du produit en multipliant l'impact considéré par le carré de l'intensité. Le PEP est valide dans une plage d'intensité prenant en compte l'intensité maximum admissible.

Matières constitutives

La masse totale du produit du référence et de son emballage est 2583,74kg/km. Les matériaux constitutifs sont repartis comme indiqué dans le graphique.

Le groupe Nexans a mis en place les procédures nécessaires pour assurer la conformité des produits à la réglementation en vigueur lors de leur mise sur le marché.

II. CYCLE DE VIE

Fabrication

- Tous les produits de la gamme U-1000 AR2V-multi sont fabriqués en France.
- Le mix électrique pour l'étape de fabrication est celui de France.
- Tous les sites de Nexans France ont mis en place un système de management environnemental certifié ISO 14001.

Des emballages conçus pour réduire l'impact environnemental:

- Les emballages ont été conçus conformément à la réglementation en vigueur (Directive 94/62/CE).
- L'emballage retenu pour transporter le produit du référence est un(e) Touret bois cerclé. Il est considéré comme étant utilisé 5 fois.

Distribution

Le scénario de transport retenu pour l'évaluation de l'impact de l'étape de distribution est local, soit:

1000 km parcourus par camion.

Installation

Les processus d'installation sont exclus des frontières du système, comme indiqué dans les rèales spécifiques relatives aux Fils, Câbles et Matériels de raccordement du programme PEP ecopassport®. Seule la fin de vie de l'emballage est considérée à cette étape.

Utilisation

Le scénario d'utilisation retenu pour cette étape considère une application Bâtiment - Residentiel / Tertiaire / Industriel, avec:

- Durée de vie de référence (DVR) = 30 ans
- Intensité (A):
- Nombres de conducteur(s) actif(s 4

- Taux d'utilisation = 70 %
- Résistivité* (ohm/km):

1,012

(*D'après la norme IEC 60228)

En considérant ces hypothèses, la consommation d'énergie durant la DVR à l'étape d'utilisation est 186,17 kWh/km.

Cette valeur est calculée pour I=1A. Pour avoir la consommation réelle du câble installé, il faut multiplier cette valeur par l'intensité au carré.

- Le mix électrique considéré à l'étape d'utilisation est: France.
- Aucune maintenance n'est nécessaire pour assurer le fonctionnement du câble durant la durée de vie de référence.

La durée de vie de référence mentionnée dans ce PEP correspond à une donnée moyenne utilisée pour les calculs d'impact, prenant en compte la durée moyenne pendant laquelle le câble est installé dans un système avant d'être considéré en fin de vie. Elle NE CONSTITUE EN AUCUN CAS une exigence de garantie de durée de vie technique du produit.

Fin de vie

- Le scénario de transport retenu pour l'analyse de l'impact lié à l'étape de fin de vie est 1000 km parcourus par camion.
- Le mix électrique retenu pour l'étape de fin de vie est France.

Les câbles sont traités par un procédé de broyage pour la séparation des parties polymères et métalliques. Les matériaux séparés sont ensuite supposés être recyclés, incinérés ou mis en décharge.

Nexans possède le savoir-faire de la valorisation des câbles en fin de vie au travers de sa structure dédiée Nexans Recycling Services (recycling.services@nexans.com), pour offrir une solution complète de recyclage des polymères et des métaux.

III. IMPACTS ENVIRONNEMENTAUX

Le produit du référence U-1000 AR2V 4G120 GL appartient aux règles de catégorie de produit (PEP-PCR-ed4-EN-2021 09 06) et aux règles spécifiques au produits (PSR-0001-ed4-EN-2022 11 16) du programme PEP ecopassport®. D'après le PCR, l'évaluation de l'impact du cycle de vie du produit du référence doit considérer les étapes de fabrication, distribution, installation, utilisation et fin de vie.

Toutes les hypothèses nécessaires à l'évaluation de l'impact environnemental du produit du référence sont présentées dans les sections précédentes (mix électriques, scénario d'utilisation, etc). Le logiciel utilisé pour réaliser l'évaluation est EIME 5.9.4, avec la base de données Nexans-2023-07.

Représentativité: l'étude est représentative de la production de câbles en France avec un scénario de distribution local. Le modèle d'électricité pour l'utilisation est France et le modèle pour la fin de vie est France .

Résultats d'impacts pour 1000 m de câble U-1000 AR2V 4G120 GL:

Indicateurs obligatoires:

Indicateurs obligatoires:							
Indicateur/flux environnementaux	Unité	Fabrication (A1-A3)	Distribution (A4)	Installation* (A5)	Utilisation-B6 (for 1 A)	Fin de vie (C1-C4)	TOTAL (for 1 A)
Changement climatique - total (GWP)	kg CO₂ eq.	9,02E+03	1,51E+02	5,18E+02	1,24E+01	1,93E+03	1,16E+04
Changement climatique - combustibles fossiles	kg CO ₂ eq.	8,96E+03	1,51E+02	5,15E+02	1,24E+01	1,93E+03	1,16E+04
Changement climatique - biogénique	kg CO ₂ eq.	5,88E+01	0,00E+00	2,93E+00	3,21E-02	1,05E+00	6,28E+01
Changement climatique - occupation des sols et transformation de l'occupation des sols	kg CO ₂ eq.	3,39E+00	0,00E+00	1,70E-01	0,00E+00	3,62E-03	3,56E+00
Appauvrissement de la couche d'ozone	kg CFC-11 eq.	1,92E-03	2,31E-07	9,51E-05	1,83E-07	1,80E-04	2,20E-03
Acidification (AP)	mol H+ eq.	7,34E+01	9,56E-01	3,00E+00	7,20E-02	3,58E+00	8,11E+01
Eutrophisation eau douce	kg PO43- eq.	2,99E-01	5,66E-05	1,52E-02	5,92E-04	1,21E-02	3,27E-01
Eutrophisation aquatique marine	kg N eq.	1,12E+01	4,48E-01	4,28E-01	9,91E-03	8,32E-01	1,29E+01
Eutrophisation terrestre	mol N eq.	6,96E+04	4,91E+00	3,48E+03	1,42E-01	9,32E+00	7,31E+04
Formation d'ozone photochimique	kg COVNM eq.	3,57E+01	1,24E+00	1,34E+00	2,93E-02	3,05E+00	4,14E+01
Épuisement des ressources abiotiques – éléments ou épuisement des ressources –métaux et minéraux	kg Sb eq.	1,82E-02	5,94E-06	9,07E-04	5,89E-06	8,98E-05	1,92E-02
Epuisement des ressources abiotiques – combustibles fossiles ou épuisement des ressources - fossiles	WJ	3,72E+05	2,10E+03	1,92E+04	2,39E+03	2,04E+04	4,16E+05
Besoin en eau	m3 eq.	7,93E+03	5,73E-01	4,02E+02	9,01E-01	6,48E+02	8,98E+03
Energie primaire renouvelable, à l'exclusion des ressources d'énergie primaire renouvelable utilisées	WJ	1,83E+04	2,81E+00	9,04E+02	2,21E+02	7,94E+02	2,02E+04
Ressources d'énergie primaire renouvelable utilisées comme matières premières	WJ	1,82E+03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,82E+03
Totale des ressources d'énergie primaire renouvelables	MJ	2,01E+04	2,81E+00	9,04E+02	2,21E+02	7,94E+02	2,20E+04
Energie primaire non renouvelable, à l'exclusion des ressources d'énergie primaire non renouvelable	WJ	3,63E+05	2,10E+03	1,88E+04	2,39E+03	2,04E+04	4,07E+05
Ressources d'énergie primaire non renouvelable utilisées comme matières premières	MJ	1,37E+04	0,00E+00	6,85E+02	0,00E+00	0,00E+00	1,44E+04
Totale des ressources d'énergie primaire non renouvelables	MJ	3,77E+05	2,10E+03	1,95E+04	2,39E+03	2,04E+04	4,21E+05
Utilisation de matière secondaire	kg	1,65E+01	0,00E+00	8,26E-01	0,00E+00	0,00E+00	1,73E+01
Utilisation de combustibles secondaires renouvelables	WJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Utilisation de combustibles secondaires non renouvelables	WJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Utilisation nette d'eau douce	m3	1,82E+02	1,33E-02	9,21E+00	2,10E-02	1,51E+01	2,07E+02
Déchets dangereux éliminés	kg	8,24E+02	0,00E+00	3,71E+01	1,85E-01	8,36E+02	1,70E+03
Déchets non dangereux éliminés	kg	3,94E+03	5,30E+00	2,93E+02	1,20E+00	1,10E+03	5,34E+03
Déchets radioactifs éliminés	kg	3,62E+00	3,77E-03	1,81E-01	5,02E-04	2,35E-01	4,04E+00
Composants destinés à la réutilisation	kg	1,03E+02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,03E+02
Matières destinées au recyclage	kg	1,32E+02	0,00E+00	5,51E+00	0,00E+00	1,33E+03	1,46E+03
Matières destinées à la valorisation énergétique	kg	4,34E+01	0,00E+00	4,79E+01	0,00E+00	3,83E+02	4,74E+02
Énergie fournie à l'extérieur	WJ	0,00E+00	0,00E+00	4,25E+01	0,00E+00	0,00E+00	4,25E+01

^{*} L'étape d'installation ne prend en compte que la fin de vie de l'emballage. Les impacts liés aux processus d'installation pourront être complétés par l'utilisateur du PEP.

Indicateur/flux environnementaux	Unité	Total
Teneur en carbone biogénique du produit	kg of C	0,00E+00
Teneur en carbone biogénique de l'emballage associé	kg of C	3,79E+01

La quantité stockée de carbone biogénique est calculé selon la méthodologie d'évaluation 0/0.

Indicateurs optionnels:

Indicateur/flux environnementaux	Unité	Fabrication	Distribution	Installation*	Utilisation	Fin de vie	TOTAL
Utilisation totale d'énergie primaire durant le cycle de vie	WI	3,97E+05	2,11E+03	2,04E+04	2,61E+03	2,12E+04	4,43E+05
Émissions de particules fines	Disease occurance	7,14E-04	7,77E-06	3,18E-05	2,79E-06	3,16E-05	7,88E-04
Rayonnements ionisants, santé humaine	kg U235 eq.	1,82E+04	3,68E-01	8,93E+02	3,22E+02	9,31E+02	2,04E+04
Écotoxicité (eaux douces)	CTUe	4,09E+05	1,02E+02	2,07E+04	8,78E+01	1,47E+04	4,44E+05
Toxicité humaine, effets cancérigènes	CTUh-c	2,93E-05	2,65E-09	1,44E-06	2,08E-09	8,18E-05	1,13E-04
Toxicité humaine, effets non cancérigènes	CTUh-nc	4,14E-04	2,87E-07	2,12E-05	8,98E-08	5,60E-06	4,42E-04
Impacts liés à l'occupation des sols/qualité du sol	No dimension	1,80E+04	0,00E+00	8,97E+02	3,97E-01	9,25E+02	1,99E+04

Les indicateurs d'impacts environnementaux sont calculés selon la méthodologie FRS - EF 3.0.

V. REGLES D'EXTRAPOLATION POUR LA GAMME U-1000 AR2V-multi

Informations générales

Les règles d'extrapolation ont été calculées sur la base de résultats d'impacts environnementaux pour 6 produits dans la gamme U-1000 AR2V-multi. Le produit du référence est le câble U-1000 AR2V 4G120 GL.

Le produit du référence a 4 conducteur(s) actif(s) et une résistivité de 0,253 ohm/km/conducteur actif.

Les règles d'extrapolation ci-dessous s'appliquent pour 1000m de produit. Dans les sections suivantes, le poids du produit est exprimé en kg pour 1000m de câble, le cas échéant.

Règles d'extrapolation pour chaque étape du cycle de vie

	Etape du cycle de vie	Principe d'extrapolation applicâble	Formule pour calculer chaque indicateur environnemental	Exemple: Si la masse du produit est 2491 kg/km, chaque indicateur est calculé avec:	L'écart moyen de la règle d'éxtrapolation
	Fabrication	Variation linéaire en fonction de la masse	Indicateur = a x Masse du cable + b	Indicator = 2491 x a + b	3,74%
	Distribution	Variation linéaire en fonction de la masse	Indicateur = a x Masse du câble + b	Indicateur = 2491 x a + b.	0,54%
Al	Installation	masse Variation linéaire en fonction de la masse	Indicateurr = a x Masse du câble + b	Indicateur = 2491 x a + b.	3,42%
***	Utilisation	Variation en fonction du ratio de résistivité	Indicateur = (Résistivité du produit / Résistivité du produit du référence) x Indicateur du produit du référence x (Nb conducteurs actifs / Nb de conducteurs actifs pour le produit du référence)	Ex: Si la résistivité du produit est de 1,2 ohm/km avec 1 conducteur actif, Indicateur = (1,2/0,253) x (1/4) x indicateur du produit du référence.	0,00%
44	Fin de vie	Variation linéaire en fonction de la masse	Indicateur = a x Masse du câble + b	Indicateur = 2491 x a + b	2,39%

Tableau à prendre en compte pour les calculs d'extrapolation des différentes étapes du cycle de vie:

					Distr	ribution	Insta	llation	End	of life
	а	b	а	b	а	b	а	b	а	b
GWP	3,84E+00	-7,49E+02	-	-	5,95E-02	1,99E+00	2,13E-01	-2,53E+01	7,92E-01	-5,38E+01
GWPf	3,82E+00	-7,51E+02	-	-	5,95E-02	1,99E+00	2,11E-01	-2,54E+01	7,91E-01	-5,39E+01
GWPb	2,28E-02	2,31E+00	-	-	0,00E+00	0,00E+00	1,14E-03	1,16E-01	4,12E-04	3,08E-02
GWPlu	1,48E-03	-3,92E-01	-	-	0,00E+00	0,00E+00	7,42E-05	-1,96E-02	1,48E-06	-6,57E-05
ODP	8,24E-07	-1,73E-04	-	-	9,11E-11	3,04E-09	4,08E-08	-8,42E-06	7,68E-08	-1,50E-05
AP	3,17E-02	-7,23E+00	-	-	3,76E-04	1,26E-02	1,28E-03	-2,72E-01	1,48E-03	-1,36E-01
Epf	1,29E-04	-2,95E-02	-	-	2,23E-08	7,45E-07	6,56E-06	-1,44E-03	4,78E-06	2,99E-04
Epm	4,77E-03	-9,49E-01	-	-	1,76E-04	5,90E-03	1,77E-04	-2,43E-02	3,40E-04	-1,81E-02
Ept	3,05E+01	-8,05E+03	-	-	1,94E-03	6,47E-02	1,52E+00	-4,02E+02	3,80E-03	-1,86E-01
POCP	1,53E-02	-3,03E+00	-	-	4,88E-04	1,63E-02	5,64E-04	-9,03E-02	1,26E-03	-1,18E-01
ADPe	7,84E-06	-1,79E-03	-	-	2,34E-09	7,81E-08	3,92E-07	-8,94E-05	3,61E-08	2,03E-07
ADPf	1,60E+02	-3,38E+04	-	-	8,29E-01	2,77E+01	8,15E+00	-1,51E+03	8,50E+00	-1,00E+03
WU	3,40E+00	-7,22E+02	-	-	2,26E-04	7,54E-03	1,72E-01	-3,45E+01	2,49E-01	3,39E+01
PÈRE	7,89E+00	-1,72E+03	-	-	1,11E-03	3,70E-02	3,91E-01	-8,57E+01	3,16E-01	9,33E+00
PERM	6,39E-01	1,33E+02	-	-	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
PERT	8,53E+00	-1,59E+03	-	-	1,11E-03	3,70E-02	3,91E-01	-8,57E+01	3,16E-01	9,33E+00
PENRE	1,57E+02	-3,56E+04	-	-	8,29E-01	2,77E+01	8,01E+00	-1,60E+03	8,50E+00	-1,00E+03
PENRM	5,10E+00	1,16E+03	-	-	0,00E+00	0,00E+00	2,55E-01	5,80E+01	0,00E+00	0,00E+00
PENRT	1,62E+02	-3,44E+04	-	-	8,29E-01	2,77E+01	8,27E+00	-1,54E+03	8,50E+00	-1,00E+03
SM	5,63E-03	4,00E+00	-	-	0,00E+00	0,00E+00	2,81E-04	2,00E-01	0,00E+00	0,00E+00
RSF	0,00E+00	0,00E+00	-	-	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
NRSF	0,00E+00	0,00E+00	-	-	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
FW	7,83E-02	-1,65E+01	-	-	5,25E-06	1,76E-04	3,94E-03	-7,86E-01	5,79E-03	7,89E-01
HWD	3,09E-01	5,01E+01	-	-	0,00E+00	0,00E+00	1,37E-02	3,16E+00	3,15E-01	5,62E+01
NHWD	1,72E+00	-4,46E+02	-	-	2,09E-03	6,97E-02	1,19E-01	-1,37E+01	4,30E-01	3,14E+01
RWD	1,58E-03	-4,15E-01	-	-	1,49E-06	4,96E-05	7,89E-05	-2,04E-02	9,00E-05	1,13E-02
CRU	3,59E-02	7,88E+00	-	-	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
MFR	5,82E-02	-3,16E+01	-	-	0,00E+00	0,00E+00	1,82E-03	6,86E-01	5,69E-01	-1,20E+02
MER	1,81E-02	-6,91E+00	-	-	0,00E+00	0,00E+00	1,68E-02	3,51E+00	1,53E-01	9,80E-01
EE	0,00E+00	0,00E+00	-	-	0,00E+00	0,00E+00	1,49E-02	3,11E+00	0,00E+00	0,00E+00
TPE	1,71E+02	-3,60E+04	-	-	8,30E-01	2,77E+01	8,66E+00	-1,63E+03	8,82E+00	-9,94E+02
EF-PM	3,09E-07	-7,16E-05	-	-	3,06E-09	1,02E-07	1,37E-08	-3,12E-06	1,29E-08	-4,97E-07
IR	7,36E+00	-5,86E+01	-	-	1,45E-04	4,84E-03	3,61E-01	-3,42E+00	3,75E-01	1,52E+00
Eco-fw	1,79E+02	-4,61E+04	-	-	4,00E-02	1,34E+00	9,02E+00	-2,26E+03	6,12E+00	-6,98E+02
HT-c	1,26E-08	-3,63E-06	-	-	1,04E-12	3,49E-11	5,96E-10	-9,09E-08	3,06E-08	6,32E-06
HT-nc	1,79E-07	-4,15E-05	-	-	1,13E-10	3,78E-09	9,11E-09	-2,01E-06	2,34E-09	-3,04E-07
LU	7,87E+00	-2,01E+03	-	-	0,00E+00	0,00E+00	3,91E-01	-9,99E+01	3,63E-01	2,60E+01

VI. PRODUITS COUVERTS PAR LE PEP

Les produits couverts par le PEP donné sont représentés dans le tableau ci-dessous par un:

Le tableau ci-dessous fournit également la résistance linéaire maximale (ohm/km) à 20°C en DC pour les fils aluminium selon la norme CEI 60228

C :: / 2)	Résistivité	N° de CONDUCTEURS																		
Section (mm ²)	(ohm/km)	1	2	3	4	5	6	7	8	9	10	12	14	19	21	24	27	30	37	40
0,5	-																			
0,75	-																			
1	-																			
1,5	-																			
2,5	-																			
4	-																			
6	-																			
10	-																			
16	-																			
25	-		•	•	•	•														
35	-			•	•	•														
50	-		•	•	•	•														
70	-			•	•	•														
95	-			•	•	•														
120	-			•	•	•														
150	-			•		•														
185	-			•																
240	-																			
300	-																			
400	-																			
500	-																			
630	-																			
800	-																			
1000	-																			
1200	-																			
1400	-																			
1600	-																			
1800	-																			
2000	-																			
2500	-																			

Pour tous les produits couverts par ce PEP, la masse (kg/km) de chaque produit et le nombre de conducteurs actifs* dans le câble sont mentionnés dans la fiche technique, qui peut être obtenue sur le site web de Nexans.

 $\underline{https://www.nexans.fr/fr/products/Building/Industrial/Rigid-cables/U-1000-AR2-536932452/product^10057459^{\sim}.html}$

*Nombre de conducteurs actifs = nombre total de conducteurs - neutre (si applicable). S'il n'y a pas de conducteur neutre dans le câble, le nombre de conducteurs actifs = nombre total de conducteurs. La fiche technique indique s'il y a ou non un conducteur neutre dans un câble particulier.

